Lagrange Multipliers and Stationary Stokes Equations

ثبت نشده
چکیده

are called stationary Stokes equations, where u : Ω→ R denotes the velocity of the uid, p : Ω→ R denotes the pressure and f : Ω → R is the density of forces acting on the uid (e.g. gravitational force). The Stokes equations govern a ow of a steady, viscous, incompresible uid. We note that (1) is called the momentum equation and (2) is called the incompressibility equation. We supplement the system (1)-(2) with the boundary condition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of the Finite Element Method Using Lagrange Multipliers for the Stationary Stokes Equations

An error analysis is presented for the approximation of the statiornary Stokes equations by a finite element method using Lagrange multipliers.

متن کامل

Lagrange Multipliers and Stationary Stokes Equations

are called stationary Stokes equations, where u : Ω→ R denotes the velocity of the uid, p : Ω→ R denotes the pressure and f : Ω → R is the density of forces acting on the uid (e.g. gravitational force). The Stokes equations govern a ow of a steady, viscous, incompresible uid. We note that (1) is called the momentum equation and (2) is called the incompressibility equation. We supplement the sys...

متن کامل

Penalized Approach and Analysis of an Optimal Shape Control Problem for the Stationary Navier–stokes Equations

This paper is concerned with an optimal shape control problem for the stationary Navier–Stokes system. A two–dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By introducing an artificial compressibility term to relax the incompressibility constraints, we take the penalty method. T...

متن کامل

Mixing and Coherent Structures in 2D Viscous Flows

We introduce a dynamical description based on a probability density φ(σ, x, y, t) of the vorticity σ in two-dimensional viscous flows such that the average vorticity evolves according to the Navier-Stokes equations. A time-dependent mixing index is defined and the class of probability densities that maximizes this index is studied. The time dependence of the Lagrange multipliers can be chosen i...

متن کامل

A Nonoverlapping Domain Decomposition Method for Incompressible Stokes Equations with Continuous Pressures

A non-overlapping domain decomposition algorithm is proposed to solve the linear system arising from mixed finite element approximation of incompressible Stokes equations. A continuous finite element space for the pressure is used. In the proposed algorithm, Lagrange multipliers are used to enforce continuity of the velocity component across the subdomain boundary. The continuity of the pressur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015